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ABSTRACT

Aim This study"cempares the phylogeography, population structure and evolution of four butterflyfish
species irChaetedomsubgenugorallochaetodonwith two widespread speciemflian Ocean-C.
trifasciatusandPacific Ocean C. lunulatu3, and two species that dexgelyrestrictedto the Red Sea

(C. austriacug and northwesterrNW) Indian Ocean(. melapterus Through extensive geograpaic
coverageof these taxawe seek to resolve patterns of genetic diversity within and between closely-

relatedbutterflyfiShspeciesn orderto illuminate biogeographaét and evolutionary processes.

Location Red Sealndian OceamndPacific Ocean

Methods A totalef632 individuals from 24 locations throughout the geographanges of all four
members of the subgenGerallochaetodomwere sequenced usindg@5 bp fragment (cytochrontg
of mtDNA. In addition, 10 microsatellite loci were used to assess population structhestiot

widespread species.

ResultsPhylogenetic reconstruction indicates that the Pacific OCe&uimulatusdiverged from the
Indian OcearButrifasciatusapproximately 3 nlion years ago, whil€. melapterusndC. austriacus
comprise a cluster.of shared haplotypes derived €otnifasciatuswithin the last 0.75 MyrThe
PacificC. lunulatushad significant population structuaéperipheral locationen the eastern edge of
its range (French Polynesia, Johnston Atdfiyvai‘i), and a strong break between two ecoregions of
the Hawaiian: Archipelago. The Indian Océartrifasciatusshowed significant structure only at the
Chagos Archipelago in theentrd Indian Ocean, and theo rangerestrictedspecies showed no
population strueturbut evidence ofecent population expansion.

Main conclusionsPatterns of endemism agédnetic diversityn Corallochaetodorbutterflyfishes

have been shaped byRljo-Pleistocene sea level changes that facilitated evolutionary divergences at
biogeographial barriers between Indian and Pacific Oceans, and the Indian Ocean and RawiSHa
semipermeable oceanographic and ecological barriers working on a shogscdle The evolution

of rangerestrictedspecies (Red SemdNW Indian Oceajpandisolatedpopulations ilawai'‘i) at
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peripherabiogeographic provincaadicates that these areas awlutionary incubators faeef

fishes.

Keywords

biogeography,Chaetodon austriacus, Chaetodon lunulatus, Chaetodon melapterus, Chaetodon
trifasciatus, microsatellites, mtDNA, reef fish speciatioAINTRODUCTION

How do new speciesith high dispersal potentiakise in an aquatic mediunPe IndoPacific reef
fishes hae two _biogeographic traits that inform this issue. First, the biodiversity of fasttesther
coralassociated species peaks at the celmdal-Australian Archipelago, where Indian and Pacific
Oceanfaunas overlap (Blum, 1989; Gaither & Rocha, 2013). Second, the highest endemism is in
peripheral regions'at the ends of the range, including the Red Sea and Hawagil(R&988).
Evidence supporting genetic differentiation in peripheral biogeographicahsegomes from both
peripheralocations, which aréhewestern and eastern limits for numerous hR&eific species
(DiBattistaet/al.,2013; Ebleet al.,2015). Phylogeographatstudies indicate that new species are
arising in both the peripheral regiomsd the biodiversity centr&¢wenet al, 2013) However, few

studies have focused on diversification in the Red Sea@miowesterni|W) Indian Ocean.

The wellresolved phylogeny of butterflyfishes (family Chaetodontidae), has made this group an
appropriate model for understandithg evolution of reef fishes (Fess&MWestneat, 2007; Cowman
& Bellwood, 2013; Hodget al, 2014). Ritterflyfishesembody the primary biogeographic patterns
outlined above, witlyreatest diversity in thendo-Australian Archipelago and highest endemism
peripheral areag he Red Sea and adjacent Gulf of Aden has 828&mism irbutterflyfishes,
compared to 3%-iklawai‘i and < 10% elsewhere in the InBacific(Randall, 2007; DiBattistat al.,
in review).sdnderstanding how the highest levels of ensimnarose far from the center of diversity
remains an"enigm&iogeographical barriers at these locatiores/have created isolated populations
or endemic species depending on the divergence time (Briggs & Bowen, 2013).

Amongbutterflyfishesthe subgens Corallochaetodorcontains four corallivorouspecieghat have
mostly parapatridistributiors with narrowareas obverlap on the range edges (Fig.@haetodon
lunulatusQuoy & Gaimard 1824 occurs throughout the Pacific Ocean fkbemvai‘i and the Tuamotu
Islands westward to Indonesia ahé eastern Indian Ocef@hristmas Island)while Chaetodon

trifasciatusPark 1797 is distributed in the Indian Ocean from Indonesia and Christmas tisBast
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92  Africa, but is not known from the Red S@sllen et al, 1998).C. lunulatusandC. trifasciatusmay be
93 IndianPacific Ocean sister species that diverged duringf&astocene sea level changlest created
94 the transienunda ShelBarrier(Hsuet al, 2007).Chaetodon melapteruSuichenot, 1868
95 restricted to thé\rabianGulf, Gulf of Oman Gulf of Adenand the southern Red Sea, wit@lleaetodon
96 austriacusRuppell; 183@ccurspredominantly in the northeland central Red Sea (Zekeeial.,
97  2005), withrare recordén the southern Red Sea amdjacent Arabian Se®Battistaet al.,in review).
98 Itis unknown If thewo rangerestricted specigC. melapterusindC. austriacu$ arose
99 independently, and whether they evolved from the widespread Indian Ocean €p#d@sciatus as
100  currentgeograpic distributionswould indicate. Thus the subgertsrallochaetodorprovides the
101  opportunity to determinkow the speciatioof butterflyfishes imperipheral locationsd. melapterus
102  andC. austriacuy comparego that in thecenterof diversity C. lunulatusandC. trifasciatug.
103
104  This study issmetivated by four primary questions. First, what is the evolutiontoyyhos$ the
105 subgenugorallochaetodofa Secondwhat arehe geographal patterrs of genetidiversitywithin
106  andbetween speci@sThird, what is the population structure (as revealed by mtDNA) of all four
107  species across their geographi@aiges? Fourth, what is the fiseale population structure (as
108 revealed bymicrosatellite DNA in the twowidespreadpeciesC. lunulatusandC. trifaciatug, and is
109 there evidence of peripheral speciatidiifese genetipatterns can illuminate the origins of marine
110  biodiversity, and the sasures that would consetwailding blocks of future biodiversity.
111
112 MATERIALS AND METHODS
113  Sample Collection
114  Tissue (fin clips=erqill filament) were obtainédm specimens collected using polespears whilst
115 SCUBAdivingrat-24 locations across the InBagcific (including theRed Seafrom 2005 to 2013(.
116  lunulatusN=603,C. trifasciatusN = 143,C. melapterudN = 95,C. austriacusN = 30) (Table 1).
117  Chaetodon lunulatusrasintensively sampled ithe Hawaiian Archipelago to assess connectivity
118 acrosghis 2600 km island chairAll tissues were preserved in a saturated salt DMSO solution (Seutin
119 etal, 1991).DNA was extracted using a “HotSHOT” protocol (Meekeal., 2007), and aliquots were
120  stored at20°C.
121
122 Mitochondrial DNA Sequencing
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A 605 basepair (bp) segment of mtDNA cytochrorbécyt b) gene was resolvddr all specimens
Details of the PCR methodologyesavailablén Appendix S1 and Waldrop (2014). The bydata
comprises a single locus but offers the advantage of haploid inheritance, lackrabmation,
comparison to existing studies and availability of universal primers for effipieduction of sequence
data.Unique"mtDNA cytb haplotypesredeposited in GenBanknder accession numbé®241594

to KP241672.

Phylogenetic relationships

Phylogeneticirelationships were examined among the four species by construgdiifigpuejoining
(NJ), maximum=likelihood (ML) and maximummarsimony (MP) trees from the dythaplotypes of all
individuals(PAUP*, Swofford, 2003, implemented in Geneious Pro 6.0.6, Drumrabad, 2010, and
MEGA 5.2.2/Famuraet al, 2011). Bootstrap support values were calculated using default settings
with 10,000 replicatem both packagedA singleChaetodon vagabundusnnaeus, 1758ample
(Genbank accession numbers: JF45800&wsed to root trees. For simplicity, a subset of unique
haplotypes was used to create the final thgeunrooted network of haplotypes walsoassembled
using a median-joining algorithm and default settings in NETWORK 4.5.1.0 (Baatd|t1999).
Molecular clock-rates provisionally estimated at 2% pPdyr (between lineages) for the dygene
(Bowenet al, 2001; Reecet al, 2011). Evolutionary distances amdimgpagesvere calculated with
the Tamura-Nei model and 1,000 bootstrap replidat84GA.

Population structure for mtDNA

An Akaike information aterion (AIC) testin IMODELTEST2.1.3 (Posada, 2008) was used to determine
the best nucleotide substitution mottel each species. THEKY model(Hasegawat al.,, 1985) vas
selectedor Cu lunulatus C. trifasciatusandC. austriacusandTrN+G (Tamura & Nei, 1993) was
selected foCemelapterusThe TrN+G is the only one athesemodels available iARLEQUIN 3.5.1.3
(Excoffier et aly2005)analytical software and was selectedall phylogeographial inferences.
ARLEQUIN was"used to calculate haploty &nd nucleotide diversityr), Fu'sFstest of neutrality

(Fu, 1997)andtoapplyan analysis of molecular variance (AMOVA; Excoffedral, 1992) to test for
patterns of population structyrteds were run for each species separat&fymplesvith N < 5were
excluded from all populatiotevel analyses and pooled into their respective larger sampling locations
to provide adequate statistical power. Hawaiian specimie@slunulatuswere subdivided into the

Main Hawaiian Islandg\HI, high islands) antlorthwesterrHawaiian IslandsN\WHI, low islands
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155 and atolls) to test fageneticstructurewithin the archipelagdC. trifasciatusspecimens from the
156 eastern India Ocean (Cocokeelinglslands and adjacent Christmas Island) were pooled to increase

157  statistical poweas they were indistinguishable in preliminary analyses.

158

159  Population structure - microsatellites

160  Microsatellite-primers were designed for lunulatusby Lawtonet al. (2010; 2011). idre the

161  widespreadC. lunulatusandC. trifasciatuswere genotyped at 10 lodidble 9.1 in Appendix S1).

162  The rangeestrictedC. melapterusandC. austriacusvere not genotyped because large samples were
163  not available;finances were limited and crepscies applications can be complicated by allele

164  dropout, homoplasy arather problems (see Selk&Toonen,2006). Details of PCR amplificatisn

165 are available in Appendix S1 and Waldrop (2014). Initially specimens from Haweag separated

166 into individual sampling locations by island. However mtDNA data revealed a genetic break between
167  the MHI and NWHI concordant with a multi-species connectivity study (Toehah,2011). For

168 subsequent analyses, Hawai‘i was partitioned into two groups; MHI and NWHI. Howaewd

169 comparison among Hawaiian sample sites is provided in T@uleisAppendix S2.

170

171  For each locus.the mean number of alleMg,(observedH o) and expectedHg) heterozygosities,

172  departure from Hardyeinberg proportions (HWE) anthkage disequilibrium (LD) were assessed

173 with GENEPOP 4.2 (Raymond & Rousset, 1995). MICRO-CHECKER 2.2.3 was used to identify null
174  allelesand excessive stutter peaks (van Oosterébat, 2004), and significance levels for multiple

175 comparisons \were adjusted using the sequential Bonferonni correction. GENODB2ZB PMeirmans

176 & Tiendereng2008was used to estimate population structure for each sp8dB&JCTURE 2.3.4

177  was used to assigndividuals to distinct genetic clusters (populations) without presumeption

178 predefined geographatlocations (Pritcharét al, 2000). The most likely number of clusters was

179 identified based on the probability §f= 1 toK = 12 orK = 1 toK = 4 forC. lunulatusandC.

180 trifasciatus respeetively. Analyses were repeated five times and averaged. Each replicate run consisted
181  of 1,000,000:MCMC repetitions, a burn-in of 10,000 iterations and assumed correlated allele

182  frequenciesvith admixed populationsaéper DiBattistaet al, 2012). STRUCTURE HARVESTER

183  0.6.93 was used to determine most likely valuk &llowing Evanncet al (2005) to visualize

184 likelihood values anthe number of groups that best fit the data (Eavb& Holdt, 2012).

185
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186 RESULTS

187  Phylogenetic relationships

188 The aithors recognize the limitations of a single-locus phylogeny, and so here we providBi& mt
189 results as an initial hypothesis of relationships among the four sp&ttiegebuilding methodsised
190 toanalyzethemtDNA cyt b fragment (605 bp) produced nearly identical tree topologies with bootstrap
191 support values forispecies level relationslmp80 to 100% (Fig. 2). The primary feature of this

192  phylogeny is a bifurcatiowith d = 0.06 sequence divergence between Pacific OCeamulatusand
193 the Indian OceaR. trifasciatus The tworangerestrictedspeciesC. melapteruandC. austriacusare
194 moreclosely related to the Indian Ocean speaies 0.015). However, they did not form monophyletic
195  groups and share the mostrmmon haplotype (Fig). The relationshigvithin the subgenus

196 Corallochaetodons apparent in the parsimony network (Fig.v@8)erePacific OcearC. lunulatusand
197 Indian Ocearrtrifasciatusare separated by 2Bagnostic nucleotide substitutions, and ¢he

198 melapterusCraustriacugluster is separated fro@ trifasciatusby three diagnostic nucleotide

199  substitutions.

200

201  Genetic diversity

202  Haplotypediversity within each species was moderate to Righugulatus h= 0.45 to 0.87C.

203 trifasciatus h= 0.67 to 0.80C. melapterus k 0.63 to 0.78C. austriacus I+ 0.84t0 0.87;Table ).

204  For the species with the largest geographic ra@g&ugulatu3, haplotype diversity was highest at the
205  peripheral location on the westezdge of its range (Christmas Island), and was generally lowest at
206  peripheral locations on the eastern edge of its range (Johnston Atoll, Main Hawaiian-I8iiids

207  Northwestern Hawaiian Island®NWHI). For C. trifasciatus haplotype diversities are silai across
208 the range. Inthestwangerestrictedspecies €. melapterusandC. austriacu}, haplotype diversity
209 was lowerat-onessampled locati@rable 1) Nucleotide diversity was low for all speci€s (unulatus
210 w=0.001to 0.005C. trifasciatuszt = 0.001 to 0.088; C. melapteruz = 0.000to 0.001;C. austriacust
211 =0.000 to 0.002Table 3, indicating a cluster of closelglated haplotypes within each species.

212

213  For the two:widespread species, only one of the 17 sample locations was sigfufi€ars Fs (C.

214  trifasciatusat Diego Garcia). For the twangerestrictedspecies, tests for Furss could only be

215 conducted osampledrom five locations and all produced significant negative valGesnelapterus
216 at Maskalj Obock and OmarC. austracusat Jazirat Baragan and Yanbu (Table 1).

217
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Population structure (mtDNA)

Significant population structure was observe@inunulatus(overall @st= 0.27 P < 0.001). In
comparisons among sample locationsp@0of 78 pairwise comparisons were statistically significant
(P < 0.05 Table 3. Five locations accounted for all the significant comparisons: Fijiéviht of 12
significant canparisons, Johnston Atoll with 3 out of 12 significant comparisons, Mo(éreach
Polynesia) with 12 out of 12 significant comparisdvisil with 5 out of 12 significant comparisons

and theNWHI with 12 out of 12 significant comparisons (Table 2). Within the Hawaiian Archipelago,
there were 13,0ut of 28 significant comparisons among sample locatadrie @.1 in Appendix S2).

All of the significant comparisons were among the three southernmost samplazhioéddiwai'i

Island,O*ahuand French Frigate Shoals) and the most northern sample location (Kure Atoll).

No significant'structure overall or significant pairwise comparisons detected among four locations
in C. trifasciatug@sr= 0.01;P = 0.50), foudocations inC. melapteru¢@sr= 0.0%, P = 0.16), or

three locations if€. austriacug @st = 0.04;P = 0.21) (Table3). HoweverC. melapterugandC.
austriacusweresignificantly isolated at a population lev@k¢ = 0.06;P = 0.001). Notably, we did not
sampleC. melapterusn the ArabianGulf and along the Somalicoastline due to logistical

limitations;additional sampling in these regions could change conclusions about population structure.

Population structure (msatDNA) within C. lunulatus and C. trifasciatus

Significant papulation structure was also detectedfdunulatususing msatDM (Fst= 0.05,P =
0.001). The msatDNAesultswere similar to that of mtDNA with most of the significant pairwise
comparisons-invelving locations on the eastern edge of the geographic range: Joluikthloatrea
MHI and theNWHI. Microsatellite allele frequencies were significantly different in 49 out of 91

comparisons fo€. lunulatug(Table4; see also TableZSl in Appendix SR

For C. lunulatus STRUCTURE identified mean probabilitiasbeing highest & = 3 (Fig 4), which
was verified usin TRUCTURE HARVESTERKig. S2.1 in Appendix S2). One widespread
population spanned locations from the western range edge (Christmas Islandi)detaskiribati in
the central Pacific Ocean. The second population was comprisgonpinately of individuals from
isolated locations on the eastern range edge: JohnstonMittlllandthe NWHI. The third population
was largely restricted to ti¢WHI.
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ThemsatDNAdatarevealed low but significant population structure@ottrifasciaus (Fst = 0.003,P

= 0.03). Microsatellite allele frequencies were significantly differetitieeout ofsix comparisons
(Table5), between Diego Garcia and all the other sampled locations (Seyc@éltestmas Ilend and
Indonesia)Microsatellite statistics for each location and both species are provided in Pabia S
Appendix S2."STRUCTURE identified mean probabilities as being highkst & (Fig 5), which was
consistent with the results froBTRUCTURE HARVESTERKig. S2.2 in Appendix S2), indicating
isolation of Diego Garcia but no distinction of samples from the east (Chrigtaad Indonesia) and
west (Seychelles) of this remote location in the Chagos Archipelagoall, there was no consistent
evidence for departufeom HWE, linkage disequilibrium or null alleles across all sampled locaitions

both species.

DISCUSSION

Phylogeneticrelationships

The primary phylogenetic feature tife subgenu€orallochaetodons mtDNA sequence divergence of
d = 0.06 betweemidian OcearC. trifasciatusand PacificC. lunulatus Based on the conventional
molecular clack of'2% per Mythis correspond® approximately 3 Mypof separatiorfTable 2.3 in
Appendix S2)¢onsistent witiHsuet al, 2007 Bellwoodet al, 2010), which is close to the onset of
modern glacial cycles at 2t6 2.8 Ma (Dwyetet al, 1995; Williamset al, 1997). The shallow Sunda
Shelf is exposed duringjacial periods withow sea levels, forming land bridges through the
Indonesian Archipelago thagstricted exchange between the Indian and Pacific Oceans (Randall
1998; Rochat al, 2007).This indicatesthat transient allopatmpnay have a role in the formation of
this species pair, a process that is apparent (or suspected) in otheiPlaciispecies pairs (Gaither
& Rocha, 2013):

A divergence time of approximately 3 Migr C. trifasciatusandC. lunulatudfalls within the rangef
divergence timef:3 — 6.6 Myr) for other Indian and Pacifister species okef fisres(Gaither&
Rocha, 2013). However, divergence tinresther Indian and Pacifiocean butterflfish sister species
tend to be'less (0.3+4 Myr) (Fessler &Westneat 2007; Hset al, 2007; Bellwoockt al, 2010;
DiBattistaet al, 2012).Variation indivergence timemaybe due to a number of factors includiig
potential differences in mutation rat&} theintermittency of theSunda Shelf Barrieduring the

Pleistocene due to repeated glacial cy(lesdifferentspecies pairs diverged at different low sea level
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281 stand$; and 3 the conditions determining secondary contact and reproductive isa#toted

282  species differently

283

284  The rangeaestrictedC. austriacusandC. melapterusharea common haplotype, and are closely

285  affiliated withCtrifasciatus(d = 0.015) The divergence betweéh trifasciatusand therange

286  restricted specids approximately 0.75 MyrTable 2.3 in Appendix S2)which corresponds with

287  Pleistocene sea level changes that repbaisolated the Red Sea region from the Indian Ocean (Fig.
288  1; Blum, 1989, DiBattistat al, 2013). Furthermore, strong upwelling in ti&/ Indian Ocean (off the
289  southermOman coast) may facilitate allopatric divergence between species from the Indian Ocean (e.g.
290 C. trifasciatug and Red Seao Arabian Gulf region(. austriacusaandC. melapterus

291

292  While the monephyly ofC. austriacusandC. melapterugould not be corradrated these two putative
293  species are genetically distinct at a population |é#et = 0.06;P = 0.001) indicatingither early

294  stages of speciation or distinct cotonorphs separated by habitat discontinuities. This finding should
295  be interpreted in light of the relatively recent origins of reef faunas inhabiting the Red Sea (DiBattista
296 etal, 2013) andArabianGulf (Shepparcet al, 2010). Estimated time since divergence is

297  approximately'50kyr, and was likelgiiiated by vicarianisolationat theStrait of Bab al Mandaljat

298 the mouth of thesRed Sea — Fig. 1). This barrier flooded about 20 k&, andtriacusandC.

299  melapterusiow have limited contact in the southern Red Sea (Randall, 1994), ackgractesed

300 by changes in environmental conditions (e.g. salinity, temperature, nutrients: KempShépgard,
301 1998) that are reflected in the fish community (Robetrts., 1992 DiBattistaet al., in review). Given
302 thatC. austriacusandC. melapteusinhabit different environmental conditions on either side of this
303 area, successfablonisationacross thipotentialbarrier maybe limited thereby facilitating

304 divergencerWhethe two species come into contact, differencelourationand assortave mating
305 may maintain reproductive isolation (McMilla al., 1999).

306

307 Thedistributionof.all four sister species overlap at their range edges, at (or adjacent to)

308 biogeographial barriers (Figl). In the eastern Indian Ocean, cohabitation and a breakdown in

309 assortative mating betweén lunulatusandC. trifasciatusat Christmas Island has ledhgbridisation
310 (Hobbset al, 2009 Montanariet al.,2014); however, there has only been limited lacdlised

311 introgression between the species. In the western Indian GCetifiasciatusandC. melapterus

312 hybridise at Socotra, with some evidence of introgression bey@iaythrid zone in Djibouti
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(DiBattistaet al, 2015). In the southern Red S€aaustriacusandC. melapterugohabit and

potentially hybridise (Randall, 199Kuiter, 2002) but the former is considered rare in this
understudied region (Rightom &., 1996). This pattern of decreasing hybratisnand introgression

with increasing divergendéne is consistent with other butterflyfish studies (Montaeal, 2014).
Overall, it appears that PlBleistocene sea level changes have facilitated allopatric speciation in both
the butterflyfishcentersof diversity (Indonesia) angeripheral areaRed Sea). Secondary contact and
hybridisation coulderode species boundari€do{emaret al.,2014); however, abrupt differences in

environmental conditions across areas of secondary contact could faeitwdiBonary divergence.

Genetic diversity

Although the geographét ranges of the four species in the subgeédusllochaetodorvary by an

order of magnitude, there was no obvious relationship between haplotype diversity andzeange si
Terrestrial studies'commonly find low haplotype diversity in raregrictedendemicgFrankham,
1998). However, endemic reef fishes can have population sizes numbering in the millionsgiHobbs
al., 2011) and thismaay explain whythey have haplotypdiversities similato widespread species (Eble
et al, 2009; Hobbet al.,2013; Delrieufrottin et al.,2014). Excluding thérabian Gulf, where
atypical conditions have resulted in an unusually low abundance and diversity of bigtexflyf
(Pratchetet al, 2023),C. austriacusandC. melapterusire the most common butterflyfish species in
their respective ranges (Berumen & Holnspub. data). Therefore, the large population sizes of the
rangerestictedC. austriacusandC. melapterusvould help generate and maintain high haplotype
diversity. Nearly all the populations of the twestrictedrangespecies had significant negative FEs
values. Therefore, it appears tRataustriacusandC. melapterusiave undergoneecentpopulation

expansion.

Population'structure - mtDNA

Data from the widgangingC. lunulatusindicates strong population structuneiereaghe sister
specie<C. trifasciatusshowed significant genetic structure only at Diego Garcia (Chagos Aratppel
Data from 'the twaoangerestricted specie€. austriacusaandC. melapterusdeteced no population
structurebased on our approach, which may indicate that egariesents a singfgnmicticpopulation.
This can be explained liigeir limited distributions in th&lW Indian Ocean, with no apparent

biogeographial barriers within each range.
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CorallochaetodomtDNA sequence data revealed that range size was not related to genetic population
structure, which is a proxy for readid dispersal abilityEbleet al, 2009). he widesprea@. lunulatus
showed significant population structateastern peripheral locatigreonsistent with known

distributioral barriers (Blum, 1989; Hset al, 2007). The distinction of the Mo‘orea populatiorCof
lunulatus(Lawtonet al, 2011; this studyis concordant witlother Pacific Ocean species and may be
caused by isolating oceanographic currents (Gadthak.,2010; Eblest al, 2011). The isolatioof

Johnston Atolindicatesthat the pelagic larval duration (~35 days: Soepatrai, 2012) ofC.

lunulatusis insufficient to make the 4@ 50 day transit to the nearest reef (Hawaiian Archipelago)
(Kobayashi, 2006).

Population differentiation heveenHawaii and other Pacific locatiorigas been reported in many other
reef fishesl(erayetal, 2010;DiBattistaet al, 2011; Gaitheet al, 2011; Szabet al, 2014,
FernandeBilvaretal, in presy The recurrent trend of genetic distinctness in this region can be
attributed to three factors: (1) isolation due to location and oceanographic ¢y&edispersal
characteristics of the fishes and &Blaptation to environmental conditiondHawai‘i (Hourigan &
Reese, 1987). Widespread reef fishesally exhibit genetic homogeneitythin the Hawaiian
archipelagoe«(Craigt al, 2007;Ebleet al, 2009;Gaitheret al, 2010, 2011Reeceet al, 2011,
DiBattistaet al, 2011, 2012; Ludet al, 2012); however, the genetic differentiatiorCotunulatus
across the archipelago (between the low islands of the NWHI and the high vadtamils iof théviHI)
is more typical oendemic reef fisheand invertebrateEbleet al, 2009 Craiget al, 2010; Toonemt
al. 2011).

Population structure — msatDNA

Investigation-of-finescale population structure in the two widespread species using msatDNA revealed
patterns similarto the mtDNA wit@. trifasciatusexhibiting low structurewhereasC. lunulatushad
morepronouncedtructure. FoC. trifasciatus the nsaDNA differed from MiIDNA results in one

point —the former.suppotte genetigsolationof Diego GarciaChagos Archipelago) in theentral

Indian Ocean. The population genetic separation of Chagos has been observed in otherareef fa
(Gaitheret al, 2010; Ebleet al, 2011; Voglert al, 2012) and may be related to seasonal monsoon-
driven currents that switch direction between easterly and westerly, possibly limiting larval dispersal to
this location (Shepparet al, 2012).
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MsatDNA analyses fo€. lunulatuswere consistent with the mtDNA results in indicating divergent
populations at peripheral locations on the eastern range edge: Mo‘orea, JohnsidhtAtahd

NWHI. The majority of the geographic range@flunulatuss comprised of relatively close islands

and reefs throughotite CentraMWest Pacific; however, the large distance and prevailing currents
work against colonetion ofHawai‘i and French Polynesia, thus explaining the genetic distinctness of
populations at tbse peripheral locations (HouriganReese1987; Gaitheet al, 2010). Tls isolation

is the starting point foperipheral speciatiqrexplaining whyHawai‘i hasone of the highedevels of

reef fish endemism in the world (Randall, 207

An interesting outcome fd€. lunulatusis the population separation between the high islands of the
MHI and the'low islands and atolls of the NWIdI; lunulatuss the first widespread reef fish to show
strong populatiensstructure across the Hawaiian ipethgo. Part of the explanation may be habitat
preferencethissspecies uses sheltered, coreth areas and the lack of this habitat between MHI and
NWHI may explain the genetic break. Indeed, at the MHI region adjacent to thks(Keria'i),
previous tansect datéunpub. datpand our own effortgdicate a near absence@flunulatus

Another part'of the explanation may include Johnston Atoll to the south. Johnston has long been
postulateditorberargateway itlawai‘i (Hourigan & Reece, 1987and SRUCTURE analysis shows
an affiliation between Johnston and the MHI, to the exclusion of the NWHI (Fig. 4)inVbiges the

possibility thatHawai‘i was colonized twice, possibly from different sources.

Conclusion

We concludéhat PlicPleistocene sea level changes have influenced speciation at both thefcenter
diversity andperipheral arasfor butterflyfishesof the subgenu€orallochaetodonEvolutionary
divergencesamoen@orallochaetodorspecies may have been initiatedrajthe intermittent
biogeographial'barries between Indian and Pacific Oceans, and between the Indian Ocean and Red
Sea.Phylogenetic analyses revealed that the two spesstisctedo the Red Sea tArabian Sea

region arandistinguishable at cyi. Genetic diversity decreasrom west to east for the widespread

C. lunulatusbut there are no patterns for the other three species. The twareshieedspecies

appear to have undergone recent population expansion and exhibit no population sivhiteutiee
widespread Indian Ocean speci€s ffifasciatu3 showed little population structyrerhichis likely
attributed tovariablelocal conditions (e.g. seasonal monsoon currents). Peripheral populations on the

eastern range edge of the widespread Pacific spéclaaulatuswere genetically distinct from
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populations in theenterof the range. The recent evolution@fmelapterugndC. austriacusn the
Red Sedo Arabian Sea region, and genetic distinctness of peripheral populations of ther®@ad€s
lunulatus,indicate that such peripheral marine habitats can be engines of biodiversityn(@aale
2013). Thus peripheral speciation (through isolation and vicariant events) would heip expldhe
Red Sea anHlawai‘i, at opposite extremes thfe IndoPacific ranges, are endemic hotsgotseef

fishes
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Location N Number of Haplotype diversity Nucleotide diversity Fu's
Haplotypes (h £ SD) (= £ SD) Fs
C. lunulatus
Christmas Island 6 4 0.867+/-0.129 0.005+/- 0.004 0.24
American Samoa 15 5 0.714+/- 0.081 0.005+/- 0.003 1.40
Fiji 30 10 0.602+/- 0.104 0.004+/- 0.003 -1.92
Kanton Island 15 5 0.695+/- 0.109 0.004+/- 0.003 0.95
Marshall Islands 29 8 0.727+/- 0.057 0.005+/- 0.003 0.91
Mo'‘orea 32 8 0.669+/- 0.086 0.005+/- 0.003 -0.04
Okinawa 8 4 0.643+/- 0.184 0.004+/- 0.003 0.73
Pohnpei 30 10 0.782+/- 0.065 0.005+/- 0.003 -0.57
Kiribati 22 3 0.589+/- 0.066 0.004+/- 0.003 4.63
Palau 26 2 0.471+/- 0.063 0.004+/- 0.002 6.68
Johnston Atoll 31 2 0.516+/- 0.024 0.004+/- 0.003 763
MHI 33 2 0.504+/- 0.034 0.004+/- 0.003 7.64
NWHI 161 13 0.452+/- 0.048 0.001+/- 0.001 -0.51
C. trifasciatys
Diego Garcia 29 8 0.672  +/- 0.074 0.001 +/- 0.001 -4.538
Seychelles 21 9 0.795 +/- 0.077 0.088 +/- 0.044 9.843
Christmas Island 14 7 0.802  +/- 0.094 0.010 +/- 0.006 0.959
Indonesia 5 3 0.700 +/- 0.218 0.002 +/- 0.002 0.061
C. melapterus
Maskali 17 5 0.353 +/- 0.353 0.001 +/- 0.001 -2.527
Obock 29 7 0.778  +/- 0.584 0.001  +/- 0.001 -3.754
Bay of Ghoubbet 15 1 0.000 +/- 0.000 0.000 +/- 0.000 na
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749

26

Oman 34 0.631 +/- 0.507 0.001 +/- 0.001 -7.615
C. austriacus

Al Lith 10 0.200  +/- 0.154 0.000  +/- 0.000 na
Jazirat Baragan 10 0.844 +/- 0.103  0.002 +/- 0.002 -3.127
Yanbu 10 0.866  +/- 0.107 0.001  +/- 0.001 -1.404
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750 Table 2.Matrix of populationpairwise @stvalues (above diagonal) and associ®e@lues (below diagonal) based on 605 bp of mtDNA
751 cytochromeb sequence data fro@haetodon lunulatusSignificantP values are indicated in bol& g 0.05).All negative @stvalues were
752  adjusted to.0.
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Christmas American Kanton Marshall Johnston

Location Mo'orea Okinawa Pohnpei Kiribati Palau MHI  NWHI

Island Samoa Island Island Atoll
Christmas _

0 0.097 0.012 0 0.284 0.107 0 0 0.084 0.006 0.003 0.597

Island
American

0.568 — 0.105 0.095 0 0.286 0.074 0 0 0.040 0 0 0.507
Samoa
Fiji 0.108 0.036 — 0 0.086 0.478 0 0.024 0.022 0.000 0.083 0.162 0.114
Kanton
\sland 0.333 0.081 0.477 — 0.079 0.470 0 0 0.031 0.040 0.105 0.178 0.245
slan
Marshall _

0.414 0.973 0.036 0.099 0.307 0.050 0 0 0.023 0 0 0.431
Islands
Mo'‘orea 0.036 <0.001 0.000 0.000 0.000 — 0.463 0.370 0.371 0431 0.342 0.298 0.757
Okinawa 0.234 0.036 0.847 0.387 0.189 <0.001 — 0.008 0 0 0.037 0.125 0.099
Pohnpei 0.658 0.387 0.144 0.423 0.369 <0.001 0.252 - 0 0.010 0.016 0.055 0.332
Kiribati 0.324 0514 0.126 0.216 0.640 <0.001 0.306 0.667 - 0 0 0.017 0.335
Palau 0.252 0.198 0.324 0.126 0.234 <0.001 0.396 0.207 0.559 — 0.003 0.068 0.228
Johnston
Aol 0.324 0.450 0.018 0.063 0.577 <0.001 0.108 0.189 0.631 0.432 — 0 0.405

(0]

MHI 0.279 0.550 0.009 0.018 0.423 <0.001 0.099 0.045 0.342 0.108 0.622 - 0.509
NWHI 0.009 <0.001 0.009 <0.001 <0.001 <0.001 0.018 <0.001 <0.001 <0.001 <0.001 <0.001 -
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754
755
756

757

melapterusandC. austriacusAll negative @stvalues were adjusted to 0.

Table 3. Matrix of populatiorpairwise @st values (above diagonal) and associfealues (below

diagonal) based on 605 bp of mtDNftochrome b sequence data frofdhaetodon trifasciatysC.

C. trifasciatus

Location Diego Garcia Seychelles Christmas Island Indonesia
DiegosGarcia — 0.014 0.027 0
Seychelles 0.268 - 0 0
Christmasiisiand 0.238 0.961 — 0
Indonesia 0.483 0.769 0.678 —

C. melapterus

Location Maskali Obock Bay of Ghoubbet Oman
Maskali - 0.030 0 0.001
Obock 0.108 - 0.022 0.007
Bay of Ghoubbet 0.991 0.270 - 0
Oman 0.459 0.288 0.667 —

C. austriacus

Location Al Lith Jazirat Baragan Yanbu

Al Lith - 0.095 0.028

Jazirat Baragan 0.207 - 0

Yanbu 0.491 0.573 -
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758
759

760

Table 4. Matrix of populatiorpairwiseFstvalues(above diagonalnd associated values(below diagonalpased on microsatellite

genotypes foChaetodon lunulatusSignificantP values are highlighted in bol& & 0.05).All negativeFstvalues were adjusted to 0.

Christmas American Kanton Marshall _ S Johnston

Location Indonesia Fiji Mo‘orea Okinawa Pohnpei Kiribati Palau MHI  NWHI

Istand Samoa Island Islands Atoll
Christmas
sland = 0 0.003 0.001 0.012 0.006 0.041 0.010 0.006 0 0.011 0.084 0.032 0.090
slan
Indonesia (0.498 — 0.007 0.002 0.001 0 0.030 0.002 0.0 0 0 0.079  0.024 0.078
American

0.378 0.067 — 0.009 0.002 0.006 0.027 0.012 0.010 0 0.007 0.082 0.037 0.075
Samoa
Fiji 0.396 0.267 0.036 — 0.002 0.002 0.030 0.007 0.005 0.000 0.007 0.088 0.030 0.089
Kanton
isiand 0.124 0.411 0.322 0.260 - 0 0.023 0.003 0.001 0 0.004 0.087 0.035 0.076
slan
Marshall
Island 0.217 0.706 0.067 0.150 0.772 — 0.029 0.005 0.000 0.000 0.002 0.084 0.030 0.079
slands
Mo'orea <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 — 0.056 0.032 0.024 0.029 0.087 0.058 0.095
Okinawa 0.203 0.300 0.089 0.093 0.331 0.116 <0.001 — 0.005 0.007 0.005 0.096 0.034 0.082
Pohnpei 0:232 0.676 0.022 0.071 0.361 0.531 <0.001 0.151 - 0 0.000 0.085 0.029 0.081
Kiribati 0.497 0.744 0.602 0.443 0.779 0.394 <0.001 0.109 0.773 — 0 0.076  0.023 0.067
Palau 0.128 0.779 0.072 0.017 0.154 0.203 <0.001 0.140 0.441  0.554 — 0.080 0.023 0.078
Johnston  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 — 0.051 0.038
MHI 0:005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 — 0.053
NWHI <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 -
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766
767
768
769
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771
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774
775
776
777
778
779
780
781
782
783
784
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Table 5. Matrix of populatiorpairwiseFstvalues(above diagonalnd associated values(below
diagonal) based on microsatellite genotype<laaetodon trifasciatusSignificantP values are

highlighted in bold P < 0.05).All negativeF st values were adjusted to 0.

Location Diego Garcia Seychelles Christmas I&and Indonesia
Diego Garcia - 0.005 0.006 0.012
Seychelles 0.047 - 0 0
Christmas l&nd 0.013 0.742 — 0.001
Indonesia 0.018 0.496 0.350 —

TITLES AND LEGENDS TO FIGURES

Figure 1. Distribution map ofChaetodorsubgencorallochaetodor{redrawn from Blum, 1989).

Chaetodon lunulatugblue, widesprea@acific Ocean)C. trifasciatugred, widespread Indian Ocean)

C. austricaug(green, largely restricted to the northern and central Red Sea; but see DiBadtisia
review)andC. melapterugyellow, restricted to the southern Red Sea through the Arabian Gug)

known geographic range of each species is outlividtda dotted line and solid pink lines represent

known marine.biogeographic barriers (Hdal, 2007) that influence the genetic partitions and

evolution ofcorallochaetodonSample dcations are shown with species-specific coloured symbols and
numbers that-eerrespond to the following location names: 1. Jazirat Baragan, 2. Yanbut8.4Al L
Obock, 5. Bay of Ghoubbet, 6. Maskali, 7. Oman, 8. Seychelles, 9. Diego Garcia, 10. Cocos (Keeling)
Islands, 11. Christmas Island, 12. Indonesia, 13. Okinawa, 14. Palau, 15. Pohnpei, 16. Marshall Islands,
17. Fiji, 18. American Samoa, 19. Kanton Island, 20. Kiribati, 21. Mo‘orea, 22. Johnston Atoll, 23.
Main Hawaiian Islands, 24. Northwestern Hawman Islands. Sample sizes for each location are
presented in"Fable Photo Creditst..A. Rocha forC. austriacusT. SinclairTaylor for C. lunulatus

C. trifasciatusandC. melapterus

Figure 2. Neighbour-joining tree based on mtDNA cytochrdosequences, highlighting the
relationship between sister specie€metodorsubgenusorallochaetodor{bootstrap values shown
based 01000 replicates). For simplicity, only a representative subspieafmengs shown.

Maximumtlikelihood and maximum-parsimony trees yielded the same topology among species.
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Chaetodon vagabundus used as an outgroup (Genbank accession number JF458006). Abbreviations:
C. lunulatus= Clu, C. trifasciatus= Ctt, C. melapterus CmlandC. austriacus= Cau.

Figure 3. Statistical parsimony network f@haetodon lunulatuéink, purple, blue shades}.
trifasciatus(green‘shadesiC. melapterugyellow and orangegandC. austriacugred)based on

MtDNA cytochromeb sequencesThe area of each circle is proportionattie abundance of the
respective_haplotypsmall circlesndicate rare or unique haplotypes andl#rgest circle indicate the
most common haplotype observed in 286 sampled individuals. Black bars and black branekentrepr

a single mutation(unless @atwise noted) and colours indicate haplotype sampling location (see key).

Figure 4. STRUCTURE bar plot fo€Chaetodon lunulatushowing the highest mean probabilitykoE
3. Locations:*I=Christmas Island, 2. Indonesia, 3. Palau, 4. Okinawa, 5. Pohnpei, 6. Marshall Islands

7. Fiji, 8. American Samoa, 9. Mo‘orea, 10. Kanton Island, 11. Kiribati, 12. Johnston Atoll, 13. MHI,
14. NWHI.

Figure 5. STRUCTURE bar plot fo€Chaetodon trifasciatushowing the highest mean probability of
K = 2. Locations%=Diego Garcia, 2. Seychelles, 3. Christmas Island, 4. Indonesia.
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